Dr Mark Fricker

Associate Professor in Plant Sciences
Mark Fricker

Tel +44 (0) 1865 275015
Fax +44 (0) 1865 275074

Research Area

Imaging signalling and transport in complex systems

Research Description

Website: www.markfricker.org

Biological Network analysis

We have pioneered network analysis of foraging basidiomycete fungi growing in unconstrained microcosms (Bebber et al. 2007a; Bebber et al. 2007b; Boddy et al. 2009; Boddy et al. 2010; Fricker et al. 2008a; Fricker et al. 2007; Fricker et al. 2008b; Heaton et al. 2010; Rotheray et al. 2008). We have shown using graph-theoretic analysis of digitised networks, that these indeterminate, de-centralized systems can yield adaptive networks with both high transport capacity and robustness to damage, but at a relatively low cost, through a 'Darwinian' process of selective reinforcement of key transport pathways and recycling of redundant routes (Bebber et al. 2007a). Furthermore, fungal networks are able to dynamically modify link strengths and local connectivity when subject to experimental attack to readjust the balance between transport capacity, robustness to damage and resource allocation, resulting in increased resilience as the environment becomes more challenging (Boddy et al. 2010; Rotheray et al. 2008). Furthermore, genetically disrupting network formation in Neurospora reduces long distance nutrient transport (Simonin et al., 2012).

Currently network extraction is a laborious manual exercise so we have developed high-throughput, automated imaging, visualisation and network analysis protocols to extract biological network organisation using Phase Congruency Tensors (PCTs) to specifically enhance curvi-linear features (Obara, 2012a-c). This approach can rapidly extract networks with 105 links in a few minutes with high fidelity.

The underlying mechanisms leading to the emergence of adaptive behaviour in macroscopic mycelial networks are unknown. However, models based on growth-induced mass flow through the experimentally determined macroscopic networks provide a high level of explanatory power for the transport of added radiolabel (Heaton et al. 2010; Heaton et al. 2012). We infer that bio-physical hydraulic coupling and internal flows observed in macroscopic networks may act as the central mechanism enabling coordinated growth across the complete range of scales in networked organisms. These models can be extended to capture the energetic constraints that determine fungal life history strategy (Heaton et al. 2015).

Slime mold networks

The work on fungal networks has also led to collaboration with Toshiyuki Nakagaki and his team in Hokkaido to understand network formation in the acellular slime mold Physarum polycephalum. We have shown that it can form networks with comparable efficiency, fault tolerance, and cost to those of real-world infrastructure networks such as the Tokyo rail system (Tero et al. 2010; Kunita et al., 2014), which was awarded an IgNobel prize in 2010. The core mechanisms needed for adaptive network formation can be captured in a biologically inspired mathematical model that may be useful to guide network construction in other domains. Network formation in fungi and slime molds can also be compared to network architecture in other domains using mesoscale community detection and clustering algorithms (Onnela et al., 2012; Lee et al., 2015).

http://www.ox.ac.uk/media/news_stories/2010/100122.html

http://www.cabdyn.ox.ac.uk/complexity_ome.asp

Long distance nutrient transport in fungi

Analysis of the network architecture allows predictive modeling of the expected nutrient dynamics. The pattern of nutrient distribution can be mapped in vivo using novel scintillation imaging techniques we have developed to map the transport of 14C-labelled α-amino isobutyrate (14C-AIB) as a non-metabolised, radiolabelled amino-acid analogue in Phanerochaete velutina (Tlalka et al. 2002, Tlalka et al. 2003, Bebber et al. 2007, Bebber et al. 2007, Fricker et al. 2008, Tlalka et al. 2008). We have revealed novel N-transport phenomena, including rapid, preferential N-resource allocation to C-rich sinks, induction of simultaneous bi-directional transport, and abrupt switching between different pre-existing transport routes (Tlalka et al., 2002; Tlalka et al., 2003; Bebber et al., 2007; Fricker et al., 2007; Tlalka et al., 2007). Using a simulation model we have also shown that preferential N-allocation and growth in response to a new resource in a range of resource environments confers an ecological benefit (Darrah et al., 2014). There is also a pulsatile component to transport and colonies self-organise into well demarcated domains that are identifiable by differences in the phase relationship of the pulses (Tlalka et al., 2003; Bebber et al., 2007; Fricker et al., 2007; Tlalka et al., 2007).

Imaging signal transduction

We have a long track record in the development and application of imaging techniques to map redox homeostasis and signalling plant and fungal systems (Moore et al., 2006; Brandizzi et al,. 2002). We developed a system for quantitative imaging of total cytoplasmic glutathione (GSH) in vivo following GST-catalysed conjugation to monochlorobimane (MCB) to give a fluorescent glutathione-bimane (GSB) adduct. This has allowed measurement of concentrations of GSH in defined cell types in intact tissues, to dissect the control of GSH synthesis and to analyse activities of GSH-based xenobiotic detoxification pathways in intact tissues with sub-cellular resolution. The imaging assay is technically complex (Fricker et al., 2000; Meyer and Fricker, 2000; Meyer et al., 2001), but now successfully applied to GSH measurements in several different types of tissues including roots (Sanchez-Fernandez et al., 1997; Fricker et al., 2001), trichomes (Gutiérrez-Alcalá et al 2000), suspension culture cells (Meyer and Fricker, 2002), and mesophyll, epidermal and guard cells of wild type and transgenic poplar over-expressing g-ECS (Hartmann et al 2003), mutants in ER morphology (Au et al., 2012), and most recently pathogenic fungi (Samalova et al., 2014).

This work on total GSH measurements has now been combined with in vivo redox imaging using ratiometric roGFP1 and roGFP2 (Schwarzlander et al., 2008; Marty et al., 2009) and application of these probes to measure mitochondrial redox state (Wagner et al., 2015) using custom ratio imaging software (Fricker, 2015) under a range of stress conditions (Lehmann et al., 2008; Schwarzlander et al., 2009), in mutants deficient in MnSOD (Morgan et al 2008), the mitochondrial Ca2+–channel subunit MICU1 (Wagner et al.,  2015) and during pathogen attack (Fuchs et al., 2015).

We have also shown that cpYFP does not act as a reporter for superoxide, but behaves as an  effective pH indicator in vivo, and reveals the presence of transient alkalinisation events associated with flickering in mitochondrial membrane potential (Schwarzlander et al. 2011; 2012).

We have started to move these approaches across to the pathogenic rice blast fungus, Magnaporthe oryzae, coupling the redox and ROS probes with nitric oxide measurements (Samalova et al., 2013; 2014).

Publications

2016

 

 

121

Chan, A, Marimar, B.C., Townlet, H., Fricker, M.D. and Thompson, I. (2016) Effective delivery of volatile biocides employing mesoporous silicates for treating biofilms. J. Roy. Soc. Interface (in press).

 

120

Akita, D., Kunita,I., Fricker, M.D., Kuroda, S., Sato, K. and Nakagaki, T. (2016) Models for Murray’s Law. J. Phys. D: Appl. Phys. 50, 024001. Doi: 10.1088/1361-6463/50/2/024001

 

119

Breeze, E., Dzimitrowicz, N., Kriechbaumer, V. Brooks, R., Botchway, S.W.,  Brady, J.P., Hawes, C., Dixon, A., Schnell, J.R., Fricker, M.D. and Frigerio, L. (2016) A C-terminal amphipathic helix is necessary for the in vivo tubule-shaping function of a plant reticulon. PNAS Doi: 10.1073/pnas.1605434113

 

118

Lee, C., Maksaev, G., Jensen, G., Murcha, M., Wilson, M., Fricker, M., Hell, R., Haswell, E., Millar, A.H., Sweetlove, L. (2016) MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant J. Doi: 10.1111/tpj.13301

 

117

Fricker, M.D., Heaton, L., Jones, N., Nakagaki, T., Akita, D. and Obara, B. (2016) Automated analysis of Physarum network structure and dynamics. Proc. PhysNet. Doi: 10.4108/eai.3-12-2015.2262482

 

116

Fricker, M.D., Moger, J., LittleJohn, G.R. and Deeks, M. (2016). Making microscopy count: quantitative light microscopy of dynamic processes in living plants. J. Microsc. 263, 181-191. Doi: 10.1111/jmi.12403

 

115

Kirchhelle, C., Chow, C.-M., Foucart, C., Neto, H., Stierhof, Y.-D., Kalde, M., Walton, C., Fricker, M.D., Smith, R.S., Jérusalem, A., Irani, N., and Moore, I., (2016) The specification of geometric edges by a plant Rab GTPase is an essential cell-patterning principle during organogenesis in Arabidopsis. Developmental Cell 36, 386–400. Doi: 10.1016/j.devcel.2016.01.020

 

114

Lee, S.H., Fricker, M.D. and Porter, M.A. (2016) Mesoscale analyses of fungal networks as an approach to quantifying phenotypic traits. Journal of Complex Networks. doi: 10.1093/comnet/cnv034

pdf

113

Fuchs, R. Kopischke, M., Klapprodt, C. Hause, G., Meyer, A., Schwarzländer, M. Fricker, M.D. and Lipka, V. (2016) Immobilized subpopulations of leaf epidermal mitochondria mediate PEN2-dependent pathogen entry control in Arabidopsis. Plant Cell, 28, 130-145 Doi: 10.1105/tpc.15.00887

 

112

Fricker, M.D. (2016) Quantitative Redox Imaging Software. Anti-oxidant and Redox Signalling 24, 752-762. Doi: 10.1089/ars.2015.6390

pdf

2015

 

 

111

Wagner, S., Behera, S., De Bortoli, S., Logan, D., Fuchs, P., Carraretto, L., Teardo, E., Cendron, L., Nietzel, T., Füßl, M., Doccula, F., Navazio, L., Fricker, M., Van Aken, O., Finkemeier, I., Meyer, A., Szabo, I., Costa, A., and Schwarzländer, M. (2015) AtMICU choreographs mitochondrial Ca2+ dynamics in Arabidopsis. Plant Cell 27, 3190-3212. Doi: 10.1105/tpc.15.00509

pdf

110

Heaton, L.L.M., Jones, N.S. and Fricker, M.D. (2015) Energetic constraints on saprotrophic fungal growth determine life history strategies. American Naturalist 187 E27-E40. Doi: 10.1086/684392

pdf

109

Wagner, S., Nietzel, T., Aller, I., Costa, A., Fricker, M.D., Meyer, A.J. and Schwarzländer, M. (2015) Analysis of plant mitochondrial function using fluorescent protein sensors. Methods in Molecular Biology 1305, 241-252. Doi: https://doi.org/10.1007/978-1-4939-2639-8_17

pdf

2014

 

 

108

Schwarzländer, M., Wagner, S., Ermakova, Y. G., Belousov, V. V., Radi, R., Beckman, J. S., Murphy, M. P. (2014). The 'mitoflash' probe cpYFP does not respond to superoxide. Nature, 514(7523), E12-E14. Doi:10.1038/nature13858

pdf

107

Lichius, A., Goryachev, A. B., Fricker, M. D., Obara, B., Castro-Longoria, E., & Read, N. D. (2014). CDC-42 and RAC-1 regulate opposite chemotropisms in Neurospora crassa. J. Cell Science, 127, 1953-1965. Doi:10.1242/jcs.141630

pdf

106

Littlejohn, G. R., Mansfield, J. C., Christmas, J. T., Witterick, E., Fricker, M. D., Grant, M. R., Love, J. (2014). An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology. Frontiers in Plant Science, 5, 140. Doi:10.3389/fpls.2014.00140

pdf

105

Samalova, M., Meyer, A. J., Gurr, S. J., & Fricker, M. D. (2014). Robust anti-oxidant defences in the rice blast fungus Magnaporthe oryzae confer tolerance to the host oxidative burst. New Phytol, 201, 556-573. Doi:10.1111/nph.12530

pdf

104

Darrah, P. R., & Fricker, M. D. (2014). Foraging by a wood-decomposing fungus is ecologically adaptive. Environ. Microbiol., 16, 118-129. Doi:10.1111/1462-2920.12216

pdf

2013

 

 

103

Samalova, M., Johnson, J., Illes, M., Kelly, S., Fricker, M., & Gurr, S. (2013). Nitric oxide generated by the rice blast fungus Magnaporthe oryzae drives plant infection. New Phytol, 197, 207-222. Doi:10.1111/j.1469-8137.2012.04368.x

pdf

102

Kunita, I., Yoshihara, K., Tero, A., Ito, K., Lee, C.-F., Fricker, M.D. and Nakagaki, T. (2013) Adaptive path-finding and transport network formation by the amoeba-like organism Physarum. In Proc. Info.Comm. Tech., 6, 14-29. Doi: 10.1007/978-4-431-54394-7_2

pdf

2012

 

 

101

Simonin, A., Palma-Guerrero, J., Fricker, M., & Louise Glass, N. (2012). Physiological significance of network organization in fungi. Eukaryotic Cell, 11, 1345-1352. Doi:10.1128/EC.00213-12

pdf

100

Yasumura, Y., Pierik, R., Fricker, M. D., Voesenek, L. A., & Harberd, N. P. (2012). Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution. Plant J, 72, 947-959. Doi:10.1111/tpj.12005

pdf

99

Onnela, J. -P., Fenn, D. J., Reid, S., Porter, M. A., Mucha, P. J., Fricker, M. D.,Jones, N. S. (2012). Taxonomies of networks from community structure. Physical Review E, 86, 036104. Doi:10.1103/PhysRevE.86.036104

pdf

98

Schwarzländer, M., Murphy, M. P., Duchen, M. R., Logan, D. C., Fricker, M. D., Halestrap, A. P., Sweetlove, L. J. (2012). Mitochondrial 'flashes': a radical concept repHined. Trends Cell Biol, 22, 503-508. Doi:10.1016/j.tcb.2012.07.007

pdf

97

Heaton, L. L., López, E., Maini, P. K., Fricker, M. D., & Jones, N. S. (2012). Advection, diffusion, and delivery over a network. Phys Rev E, 86, 021905. Doi: http://dx.doi.org/10.1103/PhysRevE.86.021905

pdf

96

Obara, B., Grau, V., & Fricker, M. D. (2012). A bioimage informatics approach to automatically extract complex fungal networks. Bioinformatics, 28, 2374-2381. Doi:10.1093/bioinformatics/bts364

pdf

95

Schwarzländer, M., Logan, D. C., Johnston, I. G., Jones, N. S., Meyer, A. J., Fricker, M. D.,Sweetlove, L. J. (2012). Pulsing of membrane potential in individual mitochondria: a stress-induced mechanism to regulate respiratory bioenergetics in Arabidopsis. Plant Cell, 24, 1188-1201. Doi:10.1105/tpc.112.096438

pdf

94

Obara, B., Fricker, M., Gavaghan, D., & Grau, V. (2012). Contrast-independent curvilinear structure detection in biomedical images. IEEE Trans Image Process, 21, 2572-2581. Doi:10.1109/TIP.2012.2185938

pdf

93

Au, K. K. C., Pérez-Gõmez, J., Neto, H., Neto, H., Müller, C., Meyer, A. J.,Moore, I. (2012). A perturbation in glutathione biosynthesis disrupts endoplasmic reticulum morphology and secretory membrane traffic in Arabidopsis thaliana. Plant Journal, 71, 881-894. Doi:10.1111/j.1365-313X.2012.05022.x

pdf

92

Heaton, L., Obara, B., Obara, B., Grau, V., Grau, V., Grau, V.,Fricker, M. D. (2012). Analysis of fungal networks. Fungal Biology Reviews, 26, 12-29. Doi:10.1016/j.fbr.2012.02.001

pdf

91

Obara, B., Obara, B., Fricker, M., Grau, V., & Grau, V. (2012). Coherence enhancing diffusion filtering based on the Phase Congruency Tensor. Proceedings - International Symposium on Biomedical Imaging, 202-205. Doi:10.1109/ISBI.2012.6235519

pdf

90

Obara, B., Obara, B., Fricker, M., Grau, V., Grau, V., & Grau, V. (2012). Contrast independent detection of branching points in network-like structures. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 8314. Doi:10.1117/12.910575

pdf

89

Obara, B., Obara, B., Fricker, M., Grau, V., & Grau, V. (2012). Local phase approaches to extract biomedical networks. Proceedings - International Symposium on Biomedical Imaging, 1796-1799. Doi:10.1109/ISBI.2012.6235931

pdf

2011

 

 

88

Schwarzländer, M., Logan, D.C., Fricker, M.D., & Sweetlove, L.J. (2011). The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide 'flashes'. Biochem J, 437, 381-387. Doi:10.1042/BJ20110883

pdf

87

Smith, D.M.D., Onnela, J.P., Onnela, J.P., Lee, C.F., Fricker, M.D.,Johnson, N.F. (2011). Network automata: Coupling structure and function in dynamic networks. Advances in Complex Systems, 14, 317-339. Doi:10.1142/S0219525911003050

 

2010

 

 

86

Heaton, L.L., López, E., Maini, P.K., Fricker, M.D., & Jones, N.S. (2010). Growth-induced mass flows in fungal networks. Proc Roy Soc B Biol Sci, 277, 3265-3274. Doi:10.1098/rspb.2010.0735

pdf

85

Boddy, L., Wood, J., Redman, E., Hynes, J., & Fricker, M. D. (2010). Fungal network responses to grazing. Fungal Genet Biol, 47, 522-530. Doi:10.1016/j.fgb.2010.01.006

pdf

84

Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D.,Nakagaki, T. (2010). Rules for biologically inspired adaptive network design. Science, 327, 439-442. Doi:10.1126/science.1177894

pdf

2009

 

 

83

Hafke, J. B., Furch, A. C., Fricker, M. D., & van Bel, A. J. (2009). Forisome dispersion in Vicia faba is triggered by Ca2+ hotspots created by concerted action of diverse Ca2+ channels in sieve elements. Plant Signal Behav, 4, 968-972. Doi: http://dx.doi.org/ 10.4161/psb.4.10.9671

pdf

82

Furch, A. C., van Bel, A. J., Fricker, M. D., Felle, H. H., Fuchs, M., & Hafke, J. B. (2009). Sieve element Ca2+ channels as relay stations between remote stimuli and sieve tube occlusion in Vicia faba. Plant Cell, 21, 2118-2132. Doi:10.1105/tpc.108.063107

pdf

81

Marty, L., Siala, W., Schwarzländer, M., Fricker, M. D., Wirtz, M., Sweetlove, L. J.,Hell, R. (2009). The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. PNAS, 106, 9109-9114. Doi:10.1073/pnas.0900206106

pdf

80

Schwarzländer, M., Fricker, M. D., & Sweetlove, L. J. (2009). Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta, 1787, 468-475. Doi:10.1016/j.bbabio.2009.01.020

pdf

79

Lehmann, M., Schwarzländer, M., Obata, T., Sirikantaramas, S., Burow, M., Olsen, C. E.,Laxa, M. (2009). The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux. Mol Plant, 2, 390-406. Doi:10.1093/mp/ssn080

pdf

78

Boddy, L., Hynes, J., Bebber, D. P., & Fricker, M. D. (2009). Saprotrophic cord systems: Dispersal mechanisms in space and time. Mycoscience, 50, 9-19. Doi:10.1007/s10267-008-0450-4

pdf

77

Fricker, M.D. Boddy, L. Nakagaki, T. Bebber, D.P. (2009) Adaptive biological networks. In Adaptive Networks: Theory, Models and Applications. Eds T. Gross and H. Sayama, Pp 51-70. Doi: 10.1007/978-3-642-01284-6_4

pdf

2008

 

 

76

Ingle, R. A., Fricker, M. D., & Smith, J. A. (2008). Evidence for nickel/proton antiport activity at the tonoplast of the hyperaccumulator plant Alyssum lesbiacum. Plant Biol (Stuttg), 10, 746-753. Doi:10.1111/j.1438-8677.2008.00080.x

pdf

75

Rotheray, T. D., Jones, T. H., Fricker, M. D., & Boddy, L. (2008). Grazing alters network architecture during interspecific mycelial interactions. Fungal Ecology, 1, 124-132. Doi:10.1016/j.funeco.2008.12.001

pdf

74

Schwarzländer, M., Fricker, M. D., Müller, C., Marty, L., Brach, T., Novak, J.,Meyer, A. J. (2008). Confocal imaging of glutathione redox potential in living plant cells. J Microsc, 231, 299-316. Doi:10.1111/j.1365-2818.2008.02030.x

pdf

73

Fricker, M. D., Lee, J. A., Bebber, D. P., Tlalka, M., Hynes, J., Darrah, P. R., Boddy, L. (2008). Imaging complex nutrient dynamics in mycelial networks. J Microsc, 231, 317-331. Doi:10.1111/j.1365-2818.2008.02043.x

pdf

72

Tlalka, M., Bebber, D. P., Darrah, P. R., Watkinson, S. C., & Fricker, M. D. (2008). Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina. Fungal Genet Biol, 45, 1111-1121. Doi:10.1016/j.fgb.2008.03.015

pdf

71

Morgan, M. J., Lehmann, M., Schwarzländer, M., Baxter, C. J., Sienkiewicz-Porzucek, A., Williams, T. C.,Finkemeier, I. (2008). Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol, 147, 101-114.Doi:10.1104/pp.107.113613

pdf

70

Tlalka, M., Fricker, M., & Watkinson, S. (2008). Imaging of long-distance alpha-aminoisobutyric acid translocation dynamics during resource capture by Serpula lacrymans. Appl Environ Microbiol, 74, 2700-2708. Doi:10.1128/AEM.02765-07

pdf

69

Samalova, M., Fricker, M., & Moore, I. (2008). Quantitative and qualitative analysis of plant membrane traffic using fluorescent proteins. Methods Cell Biol, 85, 353-380. Doi:10.1016/S0091-679X(08)85015-7

pdf

68

Meyer, A.J. and Fricker, M.D. (2008). Imaging thiol-based redox processes in live cells. In: Sulfur Metabolism in Phototropic Organisms. Ed: C. Dahl, R. Hell, D. Knaff, T. Leustek. pp. 483–501. ISBN: 1402068638, 9781402068638

pdf

67

Fricker, M.D., Bebber, D.P. and Boddy, L. (2008) Mycelial networks: structure and dynamics. In: Ecology of saprotrophic basiodiomycetes. Eds L. Boddy, J.C. Franklin and P. van West. Pp 3-18. Doi: http://dx.doi.org/10.1016/S0275-0287(08)80003-3

pdf

2007

 

 

66

Tlalka, M., Bebber, D. P., Darrah, P. R., Watkinson, S. C., & Fricker, M. D. (2007). Emergence of self-organised oscillatory domains in fungal mycelia. Fungal Genet Biol, 44, 1085-1095. Doi:10.1016/j.fgb.2007.02.013

pdf

65

Fricker, M. D., Tlalka, M., Bebber, D., Takagi, S., Watkinson, S. C., & Darrah, P. R. (2007). Fourier-based spatial mapping of oscillatory phenomena in fungi. Fungal Genet Biol, 44, 1077-1084. Doi:10.1016/j.fgb.2007.02.012

pdf

64

Bebber, D. P., Hynes, J., Darrah, P. R., Boddy, L., & Fricker, M. D. (2007). Biological solutions to transport network design. Proc Roy Soc Biol Sci, 274, 2307-2315. Doi:10.1098/rspb.2007.0459

pdf

63

Fricker, M.D., Boddy, L. and Bebber, D.P. (2007) Network organisation of mycelial fungi. In: The Mycota. Vol VIII, Biology of the Fungal Cell (2nd Ed). Eds R.J. Howard and N.A.R. Gow. 2nd ed., 341 Doi: http://dx.doi.org/10.1007/978-3-540-70618-2_13

pdf

2006

 

 

62

Libourel, I. G., van Bodegom, P. M., Fricker, M. D., & Ratcliffe, R. G. (2006). Nitrite reduces cytoplasmic acidosis under anoxia. Plant Physiol, 142, 1710-1717. Doi:10.1104/pp.106.088898

pdf

61

Samalova, M., Fricker, M., & Moore, I. (2006). Ratiometric fluorescence-imaging assays of plant membrane traffic using polyproteins. Traffic, 7, 1701-1723. Doi:10.1111/j.1600-0854.2006.00502.x

pdf

60

Bebber, D.P., Tlalka, M., Hynes, J., Darrah, P.R., Ashford, A., Watkinson, S.C., Boddy, L., and Fricker, M.D. (2006). Imaging complex nutrient dynamics in mycelial networks. In: G.M. Gadd (Ed). Fungi in the Environment. Cambridge University Press, Cambridge. ISBN: 1139462105, 9781139462105

pdf

59

Watkinson, S.C., Bebber, D., Darrah, P.R., Fricker, M.D.,Tlalka, M. & Boddy, L. (2006) The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor. In: Gadd, G.M. (ed.) Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge. ISBN 1107320747, 9781107320741

pdf

58

Jarrett, T. C., Ashton, D. J., Fricker, M., & Johnson, N. F. (2006). Interplay between function and structure in complex networks. Phys Rev E, 74, 026116. Doi: http://dx.doi.org/ http://dx.doi.org/10.1103/PhysRevE.74.026116

pdf

57

Darrah, P. R., Tlalka, M., Ashford, A., Watkinson, S. C., & Fricker, M. D. (2006). The vacuole system is a significant intracellular pathway for longitudinal solute transport in basidiomycete fungi. Eukaryot Cell, 5, 1111-1125. Doi:10.1128/EC.00026-06

pdf

56

Fricker, M., Runions, J., & Moore, I. (2006). Quantitative fluorescence microscopy: from art to science. Annu Rev Plant Biol, 57, 79-107. Doi:10.1146/annurev.arplant.57.032905.105239

pdf

55

Boddy, L., Tordoff, G.M., Wood, J., Hynes, J., Bebber, D., Jones, T.H. and Fricker, M.D. (2006). Mycelial foraging strategies of saprotrophic cord-forming basidiomycetes. In: 8th International Mycological Congress Proceedings, ed. W. Meyer & C. Pearce. Medimond, Italy. Pp. 13-20.

pdf

2005

 

 

54

Watkinson, S. C., Boddy, L., Burton, K., Darrah, P. R., Eastwood, D., Fricker, M. D.,Tlalka, M. (2005). New approaches to investigating the function of mycelial networks. Mycologist, 19, 11-17. Doi:10.1017/S0269915XO5001023

pdf

2004

 

 

53

Meskauskas, A., Fricker, M. D., & Moore, D. (2004). Simulating colonial growth of fungi with the Neighbour-Sensing model of hyphal growth. Mycol Res, 108, 1241-1256. Doi:http://dx.doi.org/10.1017/S0953756204001261

pdf

2003

 

 

52

Hartmann, T. N., Fricker, M. D., Rennenberg, H., & Meyer, A. J. (2003). Cell-specific measurement of cytosolic glutathione in poplar leaves. Plant Cell Environ, 26, 965-975. Doi: http://dx.doi.org/ 10.1046/j.1365-3040.2003.01031.x

pdf

51

Tlalka, M., Hensman, D., Darrah, P. R., Watkinson, S. C., & Fricker, M. D. (2003). Noncircadian oscillations in amino acid transport have complementary profiles in assimilatory and foraging hyphae of Phanerochaete velutina. New Phytologist, 158, 325-335. Doi:10.1046/j.1469-8137.2003.00737.x

pdf

2002

 

 

50

Meyer, A. J., & Fricker, M. D. (2002). Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol, 130, 1927-1937. Doi:10.1104/pp.008243

pdf

49

Brandizzi, F., Fricker, M., & Hawes, C. (2002). A greener world: the revolution in plant bioimaging. Nat Rev Mol Cell Biol, 3, 520-530. Doi: 10.1038/nrm861

pdf

48

Tlalka, M., Watkinson, S. C., Darrah, P. R., & Fricker, M. D. (2002). Continuous imaging of amino-acid translocation in intact mycelia of Phanerochaete velutina reveals rapid, pulsatile fluxes. New Phytologist, 153, 173-184. Doi:10.1046/j.0028-646X.2001.00288.x

pdf

2001

 

 

47

Meyer, A. J., May, M. J., & Fricker, M. (2001). Quantitative in vivo measurement of glutathione in Arabidopsis cells. Plant J, 27, 67-78. Doi: http://dx.doi.org/10.1046/j.1365-313X.2001.01071.x

pdf

46

Fricker, M. D., & Meyer, A. J. (2001). Confocal imaging of metabolism in vivo: pitfalls and possibilities. J Exp Bot, 52, 631-640. Doi: http://dx.doi.org/10.1093/jexbot/52.356.631

pdf

45

Fricker, M.D., Parsons, A., Tlalka, M., Blancaflor, E., Gilroy, S., Meyer, A. and Plieth, C. (2001) Fluorescent probes for living plant cells. In: Plant Cell Biology: A Practical Approach. 2nd Ed. Ed C. Hawes and B. Satiat-Jeunemaitre. Pp 35-84.

pdf

2000

 

 

44

Gutiérrez-Alcalá, G., Gotor, C., Meyer, A. J., Fricker, M., Vega, J. M., & Romero, L. C. (2000). Glutathione biosynthesis in Arabidopsis trichome cells. PNAS, 97, 11108-11113. Doi: http://dx.doi.org/ 10.1073/pnas.190334497

pdf

43

Meyer, A. J., & Fricker, M. D. (2000). Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two-photon laser scanning microscopy. J Microsc, 198, 174-181. Doi: doi:10.1046/j.1365-2818.2000.00696.x"

pdf

42

Fricker, M. D., May, M., Meyer, A. J., Sheard, N., & White, N. S. (2000). Measurement of glutathione levels in intact roots of Arabidopsis. J Microsc, 198, 162-173. Doi: doi:10.1046/j.1365-2818.2000.00696.x

pdf

41

Fricker, M.D., May, M., White, N.S. and Meyer, A. (2000) Modelling GSH pathways from in vivo imaging. In: Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Ed. C. Brunold, H. Rennenberg, L.J. De Kok, I. Stulen and J.-C. Davidan. Paul Haupt Publishers, Berne. Pp 353-354.

 

40

Meyer, A.J. and Fricker, M.D. (2000) Quantitative imaging of glutathione in live cells by laser scanning microscopy. In: Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Ed. C. Brunold, H. Rennenberg, L.J. De Kok, I. Stulen and J.-C. Davidan. Paul Haupt Publishers, Berne. Pp 351-352.

 

1999

 

 

39

Tlałka, M., Runquist, M., Runquist, M., & Fricker, M. (1999). Light perception and the role of the xanthophyll cycle in blue-light-dependent chloroplast movements in Lemna trisulca L. Plant Journal, 20, 447-459. Doi:10.1046/j.1365-313X.1999.00614.x

pdf

38

Tlałka, M., & Fricker, M. (1999). The role of calcium in blue-light-dependent chloroplast movement in Lemna trisulca L. Plant Journal, 20, 461-473. Doi:10.1046/j.1365-313X.1999.00621.x

pdf

37

Fricker, M.D. and Oparka, K.J. (1999) Imaging techniques in plant transport: Meeting review. J. Exp. Bot. 50 1089-1100. URL: http://www.jstor.org/stable/23696211

pdf

 

36

Fricker, M.D., Plieth, C., Knight, H., Blancaflor, E., Knight, M.R., White, N.S., and Gilroy, S. (1999) Fluorescent and luminescent techniques to probe ion activities in living plant cells. In: Fluorescent and luminescent probes. 2nd Ed. Ed. W.T. Mason. Pp 569-596. Doi: 10.1016/B978-012447836-7/50044-0

pdf

 

1998

 

 

35

Doe, C. L., Wang, G., Chow, C., Fricker, M. D., Singh, P. B., & Mellor, E. J. (1998). The fission yeast chromo domain encoding gene chp1+ is required for chromosome segregation and shows a genetic interaction with alpha-tubulin. Nucleic Acids Res, 26, 4222-4229. Doi: http://dx.doi.org/10.1093/nar/26.18.4222

pdf

1997

 

 

34

Fricker, M. D., White, N. S., & Obermeyer, G. (1997). pH gradients are not associated with tip growth in pollen tubes of Lilium longiflorum. J Cell Sci, 110, 1729-1740. URL: http://www.ncbi.nlm.nih.gov/pubmed/9264460

pdf

33

Sánchez-Fernández, R., Fricker, M., Corben, L. B., White, N. S., Sheard, N., Leaver, C. J.,May, M. J. (1997). Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. PNAS, 94, 2745-2750. Doi:10.1073/pnas.94.6.2745

pdf

32

Errington, R. J., Fricker, M. D., Wood, J. L., Hall, A. C., & White, N. S. (1997). Four-dimensional imaging of living chondrocytes in cartilage using confocal microscopy: a pragmatic approach. Am J Physiol, 272, C1040-C1051. URL: http://ajpcell.physiology.org/content/272/3/C1040.short

pdf

31

Fricker, M., Hollinshead, M., White, N., & Vaux, D. (1997). Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol, 136, 531-544. Doi: http://dx.doi.org/ 10.1083/jcb.136.3.531

pdf

30

Fricker, M.D., Errington, R.J., Wood, J.L., Tlalka, M., May, M. and White, N.S. (1997) Quantitative confocal fluorescence measurements in living tissues. In: Signal Transduction - Single Cell Research. Ed. B. Van Duijn. and A. Wiltnik. Springer-Verlag, Heidelberg. 413-445. Doi: http://dx.doi.org/10.1007/s00898-997-0019-2

pdf

29

White, N.S., Errington, R.J., Fricker, M.D. and Wood, J.L. (1997) Multidimensional fluorescence microscopy: optical distortions in quantitative imaging of biological specimens. In: Fluorescence Microscopy and Fluorescent Probes. Plenum Press. Doi: http://dx.doi.org/10.1007/978-1-4899-1866-6_4

 

1996

 

 

28

Willmer, C.M. and Fricker, M.D. (1996) Stomata. 2nd Ed.  ISBN: 0412574306, 9780412574306

 

27

White, N. S., Errington, R. J., Fricker, M. D., & Wood, J. L. (1996). Aberration control in quantitative imaging of botanical specimens by multidimensional fluorescence microscopy. Journal of Microscopy, 181, 99-116. Doi:10.1046/j.1365-2818.1996.113392.x

pdf

1995

 

 

26

Napier, R., Trueman, S., Henderson, J., Boyce, J., Hawes, C., Fricker, M.,Venis, M. (1995). Purification, sequencing and functions of calreticulin from maize. J. Exp.Botany, 46, 1603-1613. Doi:10.1093/jxb/46.10.1603

pdf

1994

 

 

25

Boyce, J. M., Coates, D., Fricker, M. D., & Evans, D. E. (1994). Genomic sequence of a calnexin homolog from Arabidopsis thaliana. Plant Physiol, 106, 1691. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC159718/

pdf

24

Larin, Z., Fricker, M. D., Maher, E., Ishikawa-Brush, Y., & Southern, E. M. (1994). Fluorescence in situ hybridisation of multiple probes on a single microscope slide. Nucleic Acids Res, 22, 3689-3692. Doi: http://dx.doi.org/10.1093/nar/22.18.3689

pdf

23

Allan, A. C., Fricker, M. D., Ward, J. L., Beale, M. H., & Trewavas, A. J. (1994). Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell, 6, 1319-1328. Doi:10.1105/tpc.6.9.1319

pdf

22

Larin, Z., Fricker, M. D., & Tyler-Smith, C. (1994). De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells. Hum Mol Genet, 3, 689-695. Doi: http://www.ncbi.nlm.nih.gov/pubmed/8081354

pdf

21

Fricker, M.D., White, N.S., Thiel, G., Millner, P., and Blatt, M.R. (1994) Peptides derived from the auxin binding protein elevate Ca2+ and pH in stomatal guard cells of Vicia: A confocal fluorescence ratio imaging study. In: Membrane Transport in Plants and fungi: Molecular Mechanisms and Contol. Eds. M.R. Blatt, R.A. Leigh and D. Sanders. SEB Symposium Series 48 215-228.

 

20

Fricker, MD, Tlalka, M, Ermantraut, J, Obermeyer, G, Dewey, M, Gurr, S, Patrick, J, White, NS. (1994) Confocal fluorescence ratio imaging of ion activities in plant cells Scanning Microscopy. 8, 391-405.

 

1993

 

 

19

Thiel, G., Blatt, M. R., Fricker, M. D., White, I. R., & Millner, P. (1993). Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin-binding protein C terminus. PNAS, 90, 11493-11497. Doi: doi:10.1073/pnas.90.24.11493

pdf

18

Fricker, M.D. Blatt, M.R. and White, N.S. (1993) Confocal fluorescence ratio imaging of pH in plant cells. In: Biotechnology Applications of Microinjection, Microscopic Imaging and Fluorescence. Eds. P. Bach, C.H. Reynolds, J.M. Clark, P.L. Poole and J. Mottley Plenum Press. Pp 151-162. Doi: http://dx.doi.org/10.1007/978-1-4615-2828-9_18

 

17

Fricker, M.D., Tester, M. and Gilroy, S. (1993) Fluorescent and luminescent techniques to probe plant cell activity. In W.T. Mason and G. Relf, Eds, Fluorescent Probes for Biological Activity of Living Cells - A Practical guide. Academic Press. Pp 360-377.

 

1992

 

 

16

Fricker, M. D., & White, N. S. (1992). Wavelength considerations in confocal microscopy of botanical specimens. J. Microscopy, 166(1), 29-42. Doi: http://dx.doi.org/ 10.1111/j.1365-2818.1992.tb01505.x

pdf

15

Fricker, M.D. and White, N.S. (1992) Application of confocal microscopy and three-dimensional image analysis to plant and microbial cells. Binary 4 44-49.

 

1991

 

 

14

Hodick, D., Gilroy, S., Fricker, M., & Trewavas, A. (1991). Cytosolic Ca2+-concentrations and distributions in rhizoids of Chara fragilis desv. determined by ratio analysis of the fluorescent-probe indo-1. Botanica Acta, 104, 222-228. Doi: http://dx.doi.org/ 10.1111/j.1438-8677.1991.tb00221.x

 

13

Fricker, M. D., Grantz, D. A., & Willmer, C. M. (1991). Stomatal responses measured using a viscous flow (liquid) porometer. J. Exp. Bot., 42, 747-755. Doi:10.1093/jxb/42.6.747

pdf

12

Gilroy, S., Fricker, M. D., Read, N. D., & Trewavas, A. J. (1991). Role of calcium in signal transduction of Commelina guard cells. Plant Cell, 3, 333-344. Doi:10.1105/tpc.3.4.333

pdf

11

Fricker, M.D., Gilroy, S.G., Read, N.D. and Trewavas, A.J. (1991) Visualisation and measurement of the calcium message in guard cells. In: Molecular Biology of Plant Development. Eds: G.I. Jenkins and W. Schuch. SEB Symposium Series, 44, 177-190.

 

10

Gilroy, S., Fricker, M.D., Read, N.D. and Trewavas, A.J. (1991) The role of Ca2+ and ABA in the regulation of stomatal aperture. In: Progress in Plant Growth Regulation. Eds. C.M. Karssen, L.C. Van Loon and D. Vreugdenhil. Current Plant Science and Biotechnology in Agriculture, 13, 105-115. Kluwer Academic Publishers. Dordrecht.

 

9

White, N.S., Bennett, S.T., Kenton, A.Y., Callimassia, M.A. and Fricker, M.D. (1991) Characterising plant chromosomes and their 3-D organisation using CLSM. Scanning 13, 228-229.

 

8

White, N.S., Fricker, M.D. and Shotton, D.M. (1991) Quantitative visualisation of 3D biological CLSM images. Scanning 13, 51-53.

 

1990

 

 

7

Fricker, M., & Willmer, C. (1990). Nitrate-sensitive ATPase activity and proton pumping in guard cell protoplasts of Commelina. J. Exp. Bot, 41, 193-198. Doi:10.1093/jxb/41.2.193

pdf

6

Bennett, S.T., Fricker, M.D., Bennett, M.D. and White, N.S. (1990) The 3-D localization of chromosomes using confocal microscopy. Trans. Royal Microscopical Soc. 1, 441-444.

 

5

Fricker, M.D., Gilroy, S.G. and Trewavas, A.J. (1990). Signal transduction in plant cells and the calcium message. In: Signal Perception and Transduction in Higher Plants. NATO AS1 Series, 47, pp 89-102. Eds R. Ranjeva and A.M. Boudet. Springer-Verlag Berlin Heidelberg.

 

4

Fricker, M.D. and White, N.S. (1990) Volume measurement of guard cell vacuoles during stomatal movements using confocal microscopy. Trans. Royal Microscopical Soc. 1, 345-348.

pdf

3

Gilroy, S., Fricker, M.D., Read, N.D. and Trewavas, A.J. (1990) Fluorescence ratio imaging and photometry of calcium in living plant cells. Trans. Royal Microscopical Soc. 1, 475-478.

 

1989

 

 

2

Gilroy, S.G., Fricker, M.D., Blowers, D., Harvey, H.J., Collinge, M. and Trewavas, A.J. (1989) Calcium channels, cytosol calcium and plasma membrane phosphorylation: an integrated calcium stat system. In: Plant Membrane Transport: The Current Position. Pp 215-224. Eds J. Dainty, M.I. DeMichelis, E. Marre and F. Rasi-Caldogno. Elsevier. Amsterdam.

 

1987

 

 

1

Fricker, M., & Willmer, C. (1987). Vanadate sensitive ATPase and phosphatase-activity in guard-cell protoplasts of Commelina. J. Exp. Bot, 38, 642-648. Doi:10.1093/jxb/38.4.642

pdf